Понедельник, 23.12.2024, 07:58Приветствую Вас Гость | RSS
Школьный двор
Меню сайта
Праздники Украины
Категории раздела
Мои статьи [11]
Математика [50]
Литература [24]
География [66]
История [76]
Химия [21]
Русский язык [61]
Биология [31]
Пословицы скороговорки [39]
Загадки для школьников [68]
Биография русских поэтов и писателей [83]
Биография украинских поэтов и писателей [40]
Биография зарубежных поэтов и писателей [56]
Школьные сочинения [325]
Задачи [15]
Открытки [6]
Рисунки из символов [14]
Шкільні твори на українській мові [174]
Характеристики литературных персонажей (героев) [41]
Физика [14]
Сопромат(Труд) [5]
Астономия [7]
Мифология [22]
Физминутка [5]
Класні виховні заходи [128]
Cценарії свят та виховних годин, інформаційні хвилинки
Поделки для детей [140]
Новогодние костюмы [16]
Песни для школьников [37]
Стихи для школьников [325]
Все на українській мові [321]
Коллекция СМС [25]
Детские игры [39]
Азбука природы [19]
Кредитка
Поиск

Каталог статей


Главная » Статьи » Математика

Деление многочленов

Деление многочленов

 

Что значит разделить один многочлен  P на другой  Q ?  Это значит найти многочлены М (частное) и N (остаток), удовлетворяющие двум требованиям:

 

          1)  имеет место равенство:  MQ + N = P ;

 

          2)  степень многочлена N меньше степени многочлена Q.

 

 Деление многочленов может быть выполнено по следующей схеме:


 

1 Делим первый член 16a³ делимого на первый член 4a² делителя; результат 4a является первым членом частного.

 

 2)  Умножаем полученное выражение 4a на делитель 4a²a + 2 ; записываем результат 16a³4a² + 8a под делимым (один подобный член под другим).

 

3)  Вычитаем почленно этот результат из делимого и сносим вниз следующий по порядку член делимого 7; получаем остаток 12a²13a + 7 .

 

4)  Делим первый член 12a² этого выражения на первый член  4a² делителя;  результат 3 – это второй член частного.

 

5)  Умножаем этот второй член частного 3 на делитель 4a²a + 2 и вновь записываем результат 12a²3a + 6 под делимым (один подобный член под другим).

 

6)  Вычитаем почленно полученный результат из предыдущего остатка и получаем второй остаток:  10a + 1. Его степень меньше степени делителя, поэтому деление заканчивается.

В результате получили частное 4a + 3 и остаток  10 a + 1.

Категория: Математика | Добавил: ZZolotko (19.06.2009)
Просмотров: 1180 | Комментарии: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
SiteHeart
загрузка...
загрузка...
Друзья сайта













   















Статистика

Онлайн всего: 3
Гостей: 3
Пользователей: 0