Понедельник, 23.12.2024, 08:57Приветствую Вас Гость | RSS
Школьный двор
Меню сайта
Праздники Украины
Категории раздела
Мои статьи [11]
Математика [50]
Литература [24]
География [66]
История [76]
Химия [21]
Русский язык [61]
Биология [31]
Пословицы скороговорки [39]
Загадки для школьников [68]
Биография русских поэтов и писателей [83]
Биография украинских поэтов и писателей [40]
Биография зарубежных поэтов и писателей [56]
Школьные сочинения [325]
Задачи [15]
Открытки [6]
Рисунки из символов [14]
Шкільні твори на українській мові [174]
Характеристики литературных персонажей (героев) [41]
Физика [14]
Сопромат(Труд) [5]
Астономия [7]
Мифология [22]
Физминутка [5]
Класні виховні заходи [128]
Cценарії свят та виховних годин, інформаційні хвилинки
Поделки для детей [140]
Новогодние костюмы [16]
Песни для школьников [37]
Стихи для школьников [325]
Все на українській мові [321]
Коллекция СМС [25]
Детские игры [39]
Азбука природы [19]
Кредитка
Поиск

Каталог статей


Главная » Статьи » Математика

Иррациональные числа. Формула сложного радикала

Иррациональные числа. Формула сложного радикала

Рациональные числа. Иррациональные числа.
Примеры иррациональных чисел.
Формула сложного радикала.

Иррациональные числа в отличие от рациональных (см. “Рациональные числа”) не могут быть представлены в виде обыкновенной несократимой дроби вида: m / n, где  и  n  целые числа. Это числа нового типа, которые могут быть вычислены с любой точностью, но не могут быть заменены рациональным числом. Они могут появиться как результат геометрических измерений, например: 

  - отношение длины диагонали квадрата к длине его стороны равно ,

  - отношение длины окружности к длине её диаметра равно иррациональному числу

Примеры других иррациональных чисел:

Докажем, что  является иррациональным числом. Предположим противное:  - рациональное число, тогда согласно определению рационального числа можно записать:  = m / n , отсюда: 2 = m2 / n2, или  m2 = 2 n2, то есть  m2 делится на 2, следовательно,  m  делится на 2, откуда  m = 2 k, тогда  m2 = 4 k2 или 4 k2 = 2 n2, то есть n2 = 2 k2, то есть n2 делится на 2, а значит,  n  делится на 2, следовательно,  m  и  n  имеют общий множитель 2, что противоречит определению рационального числа  (см. выше). Таким образом, доказано, что  является иррациональным числом.  

При алгебраических преобразованиях иррациональных выражений и уравнений, содержащих квадратные корни, может быть полезна следующая формула сложного радикала:

(все подкоренные выражения неотрицательны). Для доказательства этой формулы достаточно возвести в квадрат обе ее части.

Категория: Математика | Добавил: ZZolotko (19.06.2009)
Просмотров: 1959 | Комментарии: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
SiteHeart
загрузка...
загрузка...
Друзья сайта













   















Статистика

Онлайн всего: 5
Гостей: 5
Пользователей: 0