Понедельник, 23.12.2024, 08:58Приветствую Вас Гость | RSS
Школьный двор
Меню сайта
Праздники Украины
Категории раздела
Мои статьи [11]
Математика [50]
Литература [24]
География [66]
История [76]
Химия [21]
Русский язык [61]
Биология [31]
Пословицы скороговорки [39]
Загадки для школьников [68]
Биография русских поэтов и писателей [83]
Биография украинских поэтов и писателей [40]
Биография зарубежных поэтов и писателей [56]
Школьные сочинения [325]
Задачи [15]
Открытки [6]
Рисунки из символов [14]
Шкільні твори на українській мові [174]
Характеристики литературных персонажей (героев) [41]
Физика [14]
Сопромат(Труд) [5]
Астономия [7]
Мифология [22]
Физминутка [5]
Класні виховні заходи [128]
Cценарії свят та виховних годин, інформаційні хвилинки
Поделки для детей [140]
Новогодние костюмы [16]
Песни для школьников [37]
Стихи для школьников [325]
Все на українській мові [321]
Коллекция СМС [25]
Детские игры [39]
Азбука природы [19]
Кредитка
Поиск

Каталог статей


Главная » Статьи » Математика

Действия с обыкновенными дробями

Действия с обыкновенными дробями

 

Расширение дроби. Сокращение дроби. Сравнение дробей.

Приведение к общему знаменателю. Сложение и вычитание дробей.

Умножение дробей. Деление дробей.

Расширение дроби. Значение дроби не меняется, если умножить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется расширением дроби. Например,

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется сокращением дроби. Например,

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:


Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, чтобы привести к общему знаменателю.

П р и м е р .  Сравнить две дроби:

 

Р е ш е н и е. Расширим первую дробь на знаменатель второй, а вторую - на знаменатель первой:

Использованное здесь преобразование называется приведением дробей к общему знаменателю.

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того, чтобы сложить дроби, надо сложить их числители, а для того, чтобы вычесть дроби, надо вычесть их числители (в том же порядке). Полученная сумма или разность будет числителем результата; знаменатель останется тем же. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел мы рекомендуем сначала преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется, к виду смешанного числа.

П р и м е р .

Умножение дробей. Умножить некоторое число на дробь означает умножить его на числитель и разделить произведение на знаменатель. Следовательно, мы имеем общее правило умножения дробей: для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

П р и м е р .

Деление дробей. Для того, чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь. Это правило вытекает из определения деления (см. раздел “Арифметические операции”).

П р и м е р .     

Категория: Математика | Добавил: ZZolotko (19.06.2009)
Просмотров: 1596 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
SiteHeart
загрузка...
загрузка...
Друзья сайта













   















Статистика

Онлайн всего: 6
Гостей: 6
Пользователей: 0