Понедельник, 23.12.2024, 03:23Приветствую Вас Гость | RSS
Школьный двор
Меню сайта
Праздники Украины
Категории раздела
Мои статьи [11]
Математика [50]
Литература [24]
География [66]
История [76]
Химия [21]
Русский язык [61]
Биология [31]
Пословицы скороговорки [39]
Загадки для школьников [68]
Биография русских поэтов и писателей [83]
Биография украинских поэтов и писателей [40]
Биография зарубежных поэтов и писателей [56]
Школьные сочинения [325]
Задачи [15]
Открытки [6]
Рисунки из символов [14]
Шкільні твори на українській мові [174]
Характеристики литературных персонажей (героев) [41]
Физика [14]
Сопромат(Труд) [5]
Астономия [7]
Мифология [22]
Физминутка [5]
Класні виховні заходи [128]
Cценарії свят та виховних годин, інформаційні хвилинки
Поделки для детей [140]
Новогодние костюмы [16]
Песни для школьников [37]
Стихи для школьников [325]
Все на українській мові [321]
Коллекция СМС [25]
Детские игры [39]
Азбука природы [19]
Кредитка
Поиск

Каталог статей


Главная » Статьи » Химия

Алкены
Алкены
Строение. Изомерия и номенклатура.

Простейшими непредельными (ненасыщенными) соединениями являются углеводороды, содержащие одну или несколько двойных связей. Алкены, содержащие две двойные связи, назы­ваются диенами, содержащие три двойные связи — триенами и т.д. Соединения с несколькими двойными связями имеют общее название полиены.

Алкенами называются непредельные углеводороды, молекулы которых содержат одну двойную связь. Первый представитель этого класса — этилен СН2 = СН2, в связи с чем алкены также на­зывают этиленовыми углеводородами. Ближайшие гомологи эти­лена:

СН3-СН=СН2 СН3-СН2-СН=СН2 СН3-СН=СН-СН3
пропилен бутен-1 бутен-2

Простейший алкен с разветвленным углеродным скелетом:

       2-метил промен

Общая формула гомологического ряда алкенов СnН2n. Она совпадает с общей формулой циклоалкана, поэтому алкены и циклоалканы являются межклассовыми изомерами.

При отщеплении атома водорода от молекул алкенов образу­ются непредельные радикалы обшей формулы CnH2n-1, простей­шие из которых — винил (этенил) и аллил (пропенил):

СН2=СН- СН2=СН-СН2-
винил аллил

Атомы углерода при двойной связи находятся в состоянии sp2-гибридизации. Три s-связи, образованные гибрид­ными орбиталями, располагаются в одной плоскости под углом 120° друг к другу; p-связь образована при перекрывании негибридных 2р-орбиталей соседних атомов углерода. При этом атомные  р-орбитали   перекрываются   не   в   межъядерном   пространстве, а вне его. Поэтому такое "боковое" перекрывание менее эффективно, чем осевое, и, следовательно, p-связь является  менее прочной, чем s-связь. Дополнительное p-связывание двух атомов углерода приводит к тому, что уменьшается расстояние между ядрами, поскольку двойная связь является сочетанием s- и p-связей. Длина двойной связи С=С составляет 0.133 нм, что существенно меньше длины одинарной связи (0,154 нм). Энергия двойной связи (606 кДж/моль) меньше удвоенного зна­чения энергии одинарной связи (347-2 = 694 кДж/моль); это обус­ловлено меньшей энергией p-связи.

Структурная изомерия алкенов обусловлена изомерией углеродного скелета (например, бутен-1 и 2-метилпропен) и изомерией положения двойной связи. Пространственная, или цис-транс-изомерия обусловлена различным положением заместителей относительно плоскости двойной связи.

Если каждый из атомов углерода при связи С=С связан с дву­мя разными заместителями, то эти заместители могут распола­гаться по одну сторону от плоскости двойной связи (цис-изомер) или по разные стороны (транс-изомер), например:

      цис-бутен-2            транс-бутен-2

Эти два изомера нельзя перевести друг в друга без вращения вокруг двойной связи С=С, а это вращение требует разрыва p-связи и затраты большого количества энергии. Поэтому цис- и транс-изомеры представляют собой разные индивидуальные вещества, которые отличаются друг от друга физическими и хими­ческими свойствами. Алкены, у которых хотя бы один из атомов углерода при связи С=С имеет два одинаковых заместителя, не имеют цис-транс-изомеров.

В   алкенах   с   неразветвленной   углеродной  цепью нумерацию начинают с того конца, ближе к которому находится двойная связь. В названии соответствующего алкана окончание -ан заменяется на -ен. В разветвленных алкенах выби­рают главную цепь так, чтобы она содержала двойную связь, даже если она при этом и не будет самой длинной. Перед названием главной цепи указывают номер атома углерода, при котором на­ходится заместитель, и название этого заместителя. Номер после названия главной цепи указывает положение двойной связи, на­пример:

              4метилпентен -2
 
Получение. Свойства

Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 — 30 °С. При обычных условиях алкены С2 - С4 — газы. С5 – С15 — жидкости, начиная с C16 — твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения.

1. Основным   промышленным   источником   алкенов  служит крекинг алканов, входящих в состав нефти:


t
С8Н18 С4Н10 + С4Н8

Крекинг протекает по свободнорадикальному механизму при высоких температурах (400-700 °С).

2. Другой промышленный способ получения алкенов -    дегидрирование алканов:


t, Cr2O3
СН3-СН2-СН3
СН3-СН=СН2 + Н2

3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p-связь.  К таким реакциям относятся следующие.

1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С:


H2SO
СН3-СН2-ОН
СН2=СН2 + Н2О

2) Отщепление галогеноводородов  проводят  при  действии спиртовых растворов щелочей на моноалкилгалогениды:


С2Н6ОН
СН3-СН2-СНВr-СН3 + КОН
СН3-СН=СН-СН3 + КВr + Н2О

При отщеплении Н2O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева.

3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

CH2Br-CHBr-CH3 + Mg → СН2=СН-СН3 + MgВr2.

Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность p-связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения, обозначаемому символом AE(от англ, addition electrophilic). Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий.

На первой стадии электрофильная частица (чаще всего это бывает протон H+) взаимодействует с p-электронами двойной связи и образует p-комплекс, который затем превращается в карбокатион путем образования ковалентной s-связи между электрофильной частицей и одним из атомов углерода:

алкен                         p-комплекс                     карбокатион

На второй стадии карбокатион реагирует с анионом X-, образуя вторую s-связь за счет электронной пары аниона:

Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд. Распределение зарядов определяется смещением p-электронной плотности под влиянием заместителей: .

Электронодонорные заместители, проявляющие +I -эффект, смещают p-электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд. Этим объясняется правило Марковникова: при присоединении полярных молекул типа НХ(X= Hal, ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи.

Рассмотрим конкретные примеры реакций присоединения.

1) Гидрогалогенирование. При взаимодействии алкенов с галогеноводородами (HCl, НВr) образуются алкилгалогениды:

СН3-СН=СН2 + НВr ® СН3-СНВr-СН3.

Продукты реакции определяются правилом Марковникова.

Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:


R-O-O-R
СН3-СН=СН2 + НВr
СН3-СН2-СН2Вr

Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции.

2) Гидратация. При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются   источниками   протонов.   Присоединение   воды   также идет по правилу Марковникова:

СН3-СН=СН2 + НОН ® СН3-СН(ОН)-СН3.

3) Галогенирование. Алкены обесцвечивают бромную воду:

СН2=СН2 + Вr2 ® ВrСН2-СН2Вr.

Эта реакция является качественной на двойную связь.

4) Гидрирование.  Присоединение водорода  происходит  под действием металлических катализаторов:


 t, Ni
СН3-СН=СН2 + Н2
СН3-СН2-СН3

5) Полимеризация алкенов и их производных в присутствии кислот протекает по механизму АE:


Н*
nCH2=CHR
(-CH2-CHR-)n

где R = Н, СН3, Cl, С6Н5 и т.д. Молекула CH2=CHR называется мономером, полученное соединение — полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера) образуются двухатомные спирты:

ЗСН2=СН2 + 2КМnО4 + 4Н2О ® ЗНОСН2-СН2ОН + 2MnO2↓ + 2KOH.

В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО2, например:


[О]
СН3-СН=СН-СН3
2СН3-СООН

По продуктам окисления можно установить положение двойной связи в исходном алкене.

Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду:

СnН2n + Зn/2О2 ® nСО2↑ + nН2О.

При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды:

СnН2n + nО® nCO↑ + nH2O.

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например:

При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой — при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена.

Низшие алкены — важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.



Источник: http://www.helpschool.info
Категория: Химия | Добавил: ZZolotko (29.03.2010)
Просмотров: 3682 | Комментарии: 3 | Рейтинг: 4.0/1
Всего комментариев: 0
Имя *:
Email *:
Код *:
SiteHeart
загрузка...
загрузка...
Друзья сайта













   















Статистика

Онлайн всего: 5
Гостей: 5
Пользователей: 0